150 research outputs found

    Genetic Algorithms with Niching for Conceptual Design Studies

    Get PDF
    The paper describes the use of genetic algorithms with the concept of niching for the conceptual design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of possible solutions which can then be further optimized for field quality and manufacturability. Two 6 block dipole coils were found and proved to have advantages compared to the standard 5 block version

    Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets

    Get PDF
    The paper describes the use of genetic algorithms with the concept of niching for the optimal design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of local optima which can be further examined with respect to objectives such as ease of coil winding, sensitivity to manufacturing tolerances and local electromagnetic force distribution. A 6 block dipole coil was found to have advantages compared to the standard 5 block version which was previously designed using deterministic optimization methods. Results were proven by a short model magnet recently built and tested at CERN

    Accurate Calculation of Magnetic Fields in the End Regions of Superconducting Accelerator Magnets using the BEM-FEM Coupling Method

    Get PDF
    In this paper a new technique for the accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modelling of the nonlinear interior of the yoke. The BEM-FEM method is therefore specially suited for the calculation of 3-dimensional effects in the magnets, as the coils and the air regions do not have to be represented in the finite-element mesh and discretization errors only influence the calculation of the magnetization (reduced field) of the yoke. The method has been recently implemented into the CERN-ROXIE program package for the design and optimization of the LHC magnets. The field shape and multipole errors in the two-in-one LHC dipoles with its coil ends sticking out of the common iron yoke is presented

    Accurate Calculation of Fringe Fields in the LHC Main Dipoles

    Get PDF
    The ROXIE program developed at CERN for the design and optimization of the superconducting LHC magnets has been recently extended in a collaboration with the University of Stuttgart, Germany, with a field computation method based on the coupling between the boundary element (BEM) and the finite element (FEM) technique. This avoids the meshing of the coils and the air regions, and avoids the artificial far field boundary conditions. The method is therefore specially suited for the accurate calculation of fields in the superconducting magnets in which the field is dominated by the coil. We will present the fringe field calculations in both 2d and 3d geometries to evaluate the effect of connections and the cryostat on the field quality and the flux density to which auxiliary bus-bars are exposed

    2-D Electromagnetic Model of Fast-Ramping Superconducting Magnets

    Get PDF
    Fast-ramping superconducting (SC) accelerator magnets are the subject of R&D efforts by magnet designers at various laboratories. They require modifications of magnet design tools such as the ROXIE program at CERN, i.e. models of dynamic effects in superconductors need to be implemented and validated. In this paper we present the efforts towards a dynamic 2-D simulation of fast-ramping SC magnets with the ROXIE tool. Models are introduced and simulation results are compared to measurements of the GSI001 magnet of a GSI test magnet constructed and measured at BNL

    Integrated design of superconducting accelerator magnets

    Get PDF
    This chapter introduces the main features of the ROXIE program which has been developed for the design of the superconducting magnets for the Large Hadron Collider (LHC) at CERN. The program combines numerical field calculation with a reduced vector-potential formulation, the application of vector-optimization methods, and the use of genetic as well as deterministic minimization algorithms. Together with the applied concept of features, the software is used as an approach towards integrated design of superconducting magnets. The main quadrupole magnet for the LHC, was chosen as an example for the integrated design process. (17 refs)

    Integrated Design of Superconducting Magnets with the CERN Field Computation Program ROXIE

    Get PDF
    The program package ROXIE has been developed at CERN for the field computation of superconducting accelerator magnets and is used as an approach towards the integrated design of such magnets. It is also an example of fruitful international collaborations in software development.The integrated design of magnets includes feature based geometry generation, conceptual design using genetic optimization algorithms, optimization of the iron yoke (both in 2d and 3d) using deterministic methods, end-spacer design and inverse field calculation.The paper describes the version 8.0 of ROXIE which comprises an automatic mesh generator, an hysteresis model for the magnetization in superconducting filaments, the BEM-FEM coupling method for the 3d field calculation, a routine for the calculation of the peak temperature during a quench and neural network approximations of the objective function for the speed-up of optimization algorithms, amongst others.New results of the magnet design work for the LHC are given as examples

    Experience with the Quality Assurance of the Superconducting Electrical Circuits of the LHC Machine

    Get PDF
    The coherence between the powering reference database for the LHC and the Electrical Quality Assurance (ELQA) is guaranteed on the procedural level. However, a challenge remains the coherence between the database, the magnet test and assembly procedures, and the connection of all superconducting circuits in the LHC machine. In this paper, the methods, tooling, and procedures for the ELQA during the assembly phase of the LHC will be presented in view of the practical experience gained in the LHC tunnel. Some examples of detected polarity errors and electrical non-conformities will be presented. The parameters measured at ambient temperature, such as the dielectric insulation of circuits, will be discussed

    Impact of CMS Stray Field on the Large Hadron Collider Beam Dynamics and Thin Solenoid in the SixTrack Code

    Get PDF
    The impact of the CMS main solenoid field and stray field on the coupling and on the dynamic aperture is evaluated for both LHC collision (7 TeV) and injection optics (450 GeV). To study the impact of CMS solenoid field on the LHC dynamic aperture, a new element ‘solenoid’ has been added in the SixTrack code and debugged. In Appendix B and C the analytical formulae applied on the solenoid are presented

    First magnetic test of a superconducting Nb₃Sn wiggler magnet for CLIC

    Get PDF
    • 

    corecore